Metasurface-Enabled Remote Quantum Interference
نویسندگان
چکیده
منابع مشابه
Metasurface-Enabled Remote Quantum Interference.
An anisotropic quantum vacuum (AQV) opens novel pathways for controlling light-matter interaction in quantum optics, condensed matter physics, etc. Here, we theoretically demonstrate a strong AQV over macroscopic distances enabled by a judiciously designed array of subwavelength-scale nanoantennas-a metasurface. We harness the phase-control ability and the polarization-dependent response of the...
متن کاملMolecular diodes enabled by quantum interference.
We use scanning tunneling microscope break-junction (STM-BJ) measurements to study the low-bias conductance and high-bias current-voltage (IV) characteristics of a series of asymmetric para-meta connected diphenyl-oligoenes. From tight-binding calculations, we determine that the quantum interference features inherent in our molecular design result in a 'through-bond' coupling on the para-side, ...
متن کاملMetasurface-Mediated Quantum Entanglement
Entanglement-based quantum science exploits subtle properties of quantum mechanics into applications such as quantum computing, sensing, and metrology. The emerging route for quantum computing applications, which calls for ultracompact, integrated, and scalable architecture, aims at onchip entangled qubits. In this context, quantum entanglement among atomic qubits was achieved via cold-controll...
متن کاملQuantum interference of electromagnetic fields from remote quantum memories.
We observe quantum, Hong-Ou-Mandel, interference of fields produced by two remote atomic memories. High-visibility interference is obtained by utilizing the finite atomic memory time in four-photon delayed coincidence measurements. Interference of fields from remote atomic memories is a crucial element in protocols for scalable entanglement distribution.
متن کاملBroadband and Wide Field-of-view Plasmonic Metasurface-enabled Waveplates
Quasi two-dimensional metasurfaces composed of subwavelength nanoresonator arrays can dramatically alter the properties of light in an ultra-thin planar geometry, enabling new optical functions such as anomalous reflection and refraction, polarization filtering, and wavefront modulation. However, previous metasurface-based nanostructures suffer from low efficiency, narrow bandwidth and/or limit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2015
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.115.025501